简短又有趣的数学故事一年级【文案100句】
一、简短又有趣的数学故事
1、对此我已经找到了一个真正绝妙的证明,但这里空白处太小,写不下。
2、然而,他怎料到,他随意写下的两句手记,却让350年间的无数数学家耗尽一生,也没能找到那个证明。直到1994年,英国人安德鲁·怀尔斯才证明了费马最后定理。
3、直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。
4、也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。
5、这是他对那个挽救过其生命的盖世难题的报恩方式。
6、妈妈说:“你们一个人写一篇数学故事吧?”我说:“好!”妹妹也说:“好!”妈妈又说:“你们一人看一集电视,看谁写得好。”
7、后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。”
8、首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。
9、罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了。
10、微积分的诞生是数学史上,也是人类历史上最伟大最有影响的创举,因为从此数学家和科学家在讨论连续变化的数量时便有了科学依据。化学、生物学、地理学、现代信息技术等学科运用微积分的方法推导演绎出各种新的公式、定理,促成了后来一切科学和技术领域的革命。离开微积分,人类将停止前进的步伐。恩格斯曾说:『在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。』
11、蔡志忠漫画《人生是时间的微积分》——少林寺石碑
12、蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
13、北京最顶尖中小学生都看什么书?(人大附,清华附特级教师推荐书单)
14、三句话七个字,就是一道数学题:用这三句话组成乘法算式数学的趣味小故事篇20春节里,养鸡专业户小粗心站在院子里,数了一遍鸡的总数,决定留下,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小粗心奇怪了。问题出在哪里呢?你知道小粗心在院里数的鸡是多少只吗?
15、1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。
16、所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。
17、动物学校举办儿歌比赛,大象老师做裁判。小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加得数算得快又准。”
18、承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
19、来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住?其实,吴文俊对日期的记忆力是很强的。他在将近花甲之年的时候,又先攻了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式。
20、1637年的某一天,法国律师兼业余数学家费马,在一本书的空白处写下了下面一段话:
二、简短又有趣的数学故事一年级
1、毕达哥拉斯是古希腊传统数学和哲学的创始人。以他的名字命名的学派是一个个人崇拜的秘密组织,鼓吹节欲、尊长和一夫一妻制。他认为,世界万物都是由数字统治的,他用数字推断人的命运,如奇数被认为与男性有关,而偶数与女性有关。他发现了称之为『完全数』的数字,也就是那些等于自己全部真因子之和的数字。比如:6(6=1+2+3)和28(28=1+2+4+7+14)。已知的完全数共有47个,随着计算机发展速度的日益加快,每隔几年就会发现新的完全数。
2、一家手杖店来了一个顾客,买了30元一根的手杖.他拿出一张50元的票子,要求找钱.
3、微积分是微分和积分的总称,『无限细分』就是微分,『无限求和』就是积分。比如,炮弹飞出炮膛的瞬间速度就是微分的概念,炮弹每个瞬间所飞行的路程之和就是积分的概念。
4、教育部又给中小学生推荐优秀影片了!你家孩子看过几个?
5、如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。
6、看到这个事实,阿基米德会目瞪口呆、刘徽会无语凝眸。所以,如果上帝创造了整数,而且他也创造了π,那或许上帝其实是一台计算机。
7、阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。
8、来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗?”“
9、英国学生RoryKirkman在数学考试两次失败后
10、到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
11、两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。
12、当你抬头仰望星空的时候,是否有过想问『为什么』的冲动?但浩瀚的宇宙却从来不吐露一个字。人类历史上有一些人,和我们一样也曾仰望星空,他们的名字是:阿基米德、开普勒、高斯、牛顿、麦克斯韦、爱因斯坦……他们用代表着人类的智慧,向宇宙提问、与宇宙对话,将关于宇宙的秘密翻译成我们能懂的语言,这种语言就是如上这些光耀后世的『数学公式』。
13、理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
14、任何立方数都不可能写为两个立方数之和的形式,也没有任何四次方数可以写成另外两个四次方数的形式。普遍地说,任何二次以上的幂都不可能写成另外两个同次幂的形式。
15、我们来到红石公园,钓假鱼。
16、把邻居的树借来一棵加上来分,17+1=18(棵)老大:18的二分之一是9(棵)老二:18的三分之一是6(棵)老三:18的九分之一是2(棵)9+6+2正好17棵,最后把邻居家的树还给邻居。数学的趣味小故事篇16自己身体的计算器
17、我们身体真的很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。家长可能不理解,但是很多小孩子很快就能学会。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是它右边剩下的手指根数是将它们放在一起,得出7×9的答案是
18、世界上没有比数学更美的花朵。
19、假设你在参加一个由50人组成的婚礼,有人或许会问:我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”
20、这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
三、简短又有趣的数学故事四年级
1、三句话分别表示数37和9
2、也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。
3、五角星是非常美丽的,这是为什么?
4、我没有被这道题吓倒,难题能激发我的兴趣。我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥。
5、面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
6、我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一段时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。
7、不过,正在他们一筹莫展的时候,一个聪明的小朋友从这里路过,轻轻松松,就将这个问题解决了,让我们一起看看他的解决方法吧。
8、稍有数学阅历的人都有这样的直觉,凡是『简洁』的公式都会给人以美感。而1+1=这是所有公式中最简单明了的一个了,我们只有把它的发明归功于上帝。
9、小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0—9既然叫‘阿拉伯数字’,那肯定是阿拉伯人发明的了,对吗妈妈?”
10、四大名著知识点归纳!家有小学生的赶快收藏!
11、在写下上面的猜想后,这个天生羞涩、沉默寡言的人却跟世界玩了一个恶作剧,他又写道:
12、人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之一。回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。
13、法老问泰勒斯用什么工具来量金字塔。泰勒斯说只用一根木棍和一把尺子,他把木棍插在金字塔旁边,等木棍的影子和木棍一样长的时候,他量了金字塔影子的长度和金字塔底面边长的一半。
14、不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。
15、其实数学是非常有趣的,大家一定要开心学数学!
16、一根绳子,从一端开始燃烧,烧完需要1小时。现在要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。
17、小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0—9既然叫‘阿拉伯数字’,那肯定是阿拉伯人发明的了,对吗妈妈?”
18、随后问大家:8分为两半等于几?
19、1~6年级奥数学习重难点梳理(附小学奥数34个知识点总结)
20、数学是世界上最和谐的音符。
四、简短又有趣的数学故事100字
1、战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
2、不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。
3、在纵式中,纵摆的每根算筹都代表表示6~9时,则上面摆一根横的代表横式中则是横摆的每一根都代表其上面纵摆的一根代表而且规定,个位和百位必须用纵式,十位和千位必须用横式,纵横相间,使各位界限分明,以免发生混乱。
4、我们的身体真得很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。计算9的倍数时,将手放在膝盖上,如下图所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×只要弯曲标有数字7的手指,然后数左边剩下的手指数是右边剩下的手指数是将它们放在一起,得出7×9的答案是
5、店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头.
6、在地板上画一系列间距为2厘米的平行线,然后把一根长度为1厘米的针扔在地板上。那么,这根针与地板上的线条相交的概率是多少呢?1733年,法国博物学家布丰第一次提出了这个问题。1777年,布丰自己解决了这个问题——这个概率值是1/π。
7、国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电。
8、○投稿邮箱:shuxuetg@1com
9、人们在交谈中,往往就是运用这样的手势来表示数字的。据推测,“十进制”被广泛应用,很可能也与手指计数有关。当时,罗马人为了记录这些数字,便在羊皮上画出Ⅰ、Ⅱ、Ⅲ来代替手指的数;要表示一只手时,就写成“Ⅴ”形,表示大拇指与食指张开的形状;表示两只手时,就画成“ⅤⅤ”形,后来又写成一只手向上,一只手向下的“Ⅹ”,这就是罗马数字的雏形。
10、妈妈摇摇头说:“阿拉伯数字实际上是印度人发明的。大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。
11、把这两个长度加起来就是金字塔的高度了。泰勒斯真是世界上最聪明的人,他不用爬到金字塔的顶上就方便量出了金字塔的高度。
12、哈雷慷慨解囊,赞助牛顿出版了此书,他的这一义举最终以一种非常独特的方式得到了回报:除了对苹果和行星以外,牛顿的理论也可应用于彗星。因为彗星的轨道是椭圆,所以它们一定会一次又一次地回归。哈雷意识到,人们曾多次观察到一颗特定彗星,它以大约75年的周期回归:1456年、1531年、1606年和1682年。于是他正确地预测了这颗彗星将会在1758年(那时他早已离世)再次回归。从那时起,这颗彗星每隔75至76年就会回归一次,这就是著名的哈雷彗星。
13、妹妹问道:“咱们干点什么呢?”我说:“咱们可以把糖果拿出来,然后分开。
14、随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。
15、就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
16、因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。他也就能够借此机会来处理未完的事情。但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里。老师看了,很生气地训斥高斯。
17、钓鱼摊在红石公园的东边,钓鱼池其实就是一个充气水池,里面有各种各样的塑料鱼、小鸭子、章鱼、海豚什么的`……,鱼竿也是塑料的,鱼线下面挂着一个吸铁球,鱼的嘴里砸了一个钉子,这样,就可以引鱼上钩了。
18、数学发展史上的三次危机
19、1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁。
20、一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。
五、简短又有趣的数学故事及图片
1、随着社会的进步和发展,简单的计数就是必须的了,一个部落集体必须知道它有多少成员或有多少敌人,一个人也必须知道他的羊群里的羊是不是少了。这样,人类的祖先在与大自然的艰难搏斗中,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,逐渐产生了数的概念。
2、麦克斯韦方程预言电磁波可以以不同的波长存在,例如我们今天叫作微波、红外线、紫外线和X射线的那些光波就都是电磁波。它们预言这样的波可以通过振荡电场产生。1901年,意大利人古列尔莫·马可尼正是利用这一原理发射了第一束无线电波。它们暗示光本身可以产生压强。果然不错,研究人员在20世纪发现了『太阳风』,它揭开了彗星尾部所指的方向背离太阳的千古之谜。而在1905年,它们又为阿尔伯特·爱因斯坦指明了发现相对论的道路。
3、家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?
4、小朋友和兄弟三个人说:“要想用现有的树,将其按照你们父亲的叮嘱分是分不开的,所以,我们需要借助下外人的树”,听到这里,兄弟三人还是很迷茫,于是,小朋友就给他们继续解答问题。
5、你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
6、当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时间处理一些自我的私事,因此打算出一道难题给学生练习。他的题目是:1+2+3+4+5+6+7+8+9+10=?
7、其实你一点都不厌恶数学
8、唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?
9、之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
10、于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?数学的趣味小故事篇14小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜市场卖鱼。
11、大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。
12、所谓“结绳计数”就是用打绳结的办法来计算物体的数量。当然,除了“结绳计数”外,远古时代的人们还发明了很多其他的办法,比如用利器在骨头上刻下痕迹来计算数字。但是由于绳子可以随身携带,“结绳计数”这一方法最为方便可行,所以成了人们广泛使用的一种方法。古人为了要记住一件事,就在绳子上打一个结。以后看到这个结,他就会想起那件事。如果要记住两件事,他就打两个结。记三件事,他就打三个结,如此等等。
13、同一天过生日的概率
14、牛顿和莱布尼茨几乎是同时独立地发明了微积分,莱布尼茨稍晚几年。在1673到1675年之间的某个时刻,莱布尼茨曾与牛顿联系,想知道牛顿到底已经知道了些什么,并提出了某种交换信息的建议:你告诉我这个,我就告诉你那个。牛顿在回信中透露了微积分基本定理,但把它隐藏在一个难以破解的字母易位字谜中。牛顿显然并不想与莱布尼茨分享他的发现。他只是要留下伏笔,一旦莱布尼茨以后说这一定理是他自己的,牛顿就可以此证明他才是第一个发明人。敢情伟大的科学家也这么小心眼儿呢!
15、小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加得数算得快又准。”
16、顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的.店主不得已向邻居赔偿了50元.随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失.”
17、大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
18、我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。
19、1 数学老师问小强,你口袋有5块糖,给了大熊2块,还有多少块?小强说,0块,数学老师说,你不懂数学,小强说,你不懂大熊。
20、聪明的同学们,你们知道这是怎么一回事吗?数学的趣味小故事篇15从前,有一个老汉,临死前对三个儿子说:“我不行了。咱们家只有十七棵树,我死后,老大分二分之老二分三分之老三分九分之并且,每个树都不能砍倒。”说完这些,老汉死了。