简短又有趣的数学故事(89句文案短句)

2023-04-29 12:12:27

简短又有趣的数学故事

1、大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。拓展资料从数学趣味小故事中,小朋友们不仅可以学习到知识,还可以在愉快的氛围中体验学习乐趣、积极开动脑筋。 补充故事:傍晚,我在奥林匹克书中看到一道难题:果园里的苹果树是梨树的3倍,老王师傅每天给50棵苹果树20棵梨树施肥,几天后,梨树全部施上肥,但苹果树还剩下80棵没施肥。请问:果园里有苹果树和梨树各多少棵?

2、德国有一位数学家叫莫比乌斯,1858年,一次偶然的机会,他从一片弯曲耸拉下来的玉米叶子里获得启发,发现了这样一个奇妙的纸圈,把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质,人们就把这样的“怪圈”叫莫比乌斯带。

3、对此我已经找到了一个真正绝妙的证明,但这里空白处太小,写不下。(简短又有趣的数学故事)。

4、公元前2900年兴建的法老胡夫金字塔,它足以说明古埃及人在几何学上取得的成就。公元前2000年左右,古巴比伦人就有了计算长方体、正方体和圆柱等体积的经验。他们计算正四棱台体积的方法和现在的完全相同。我国古代劳动人民早在2000多年前,就会计算各种不同形状物体的体积。《九章算术》中记载的圆柱体积的计算方法是“周自相乘,以高乘之,十二而一”,也就是底面周长的平方乘高,再除以这种计算方法与现在的算法是一致的,只不过取圆周率的近似数为

5、我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一段时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。

6、用手指计数和计算的一个很大缺点就是无法保存记录。如果一个猎人想统计自己一个月内打了多少野兽,要每天累加起来,总不能天天掐着手指睡觉吧!人类最早借助的外物是大自然中随处可见的石子、贝壳、小木棍、玉米粒、豆粒、甚至动物的尾巴和角等,比如用石子来表示圈养了多少猎物,今天宰杀了两头就从中取出两个石子,明天新狩猎到三头就往里添加三个石子,人就不需要时刻记着还剩多少头猎物了。

7、小学语文100句必考“句式转换”方法总结与练习!(简短又有趣的数学故事)。

8、抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。

9、但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。

10、阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。

11、当我们厌恶数学时,我们厌恶的是数学吗?莫如说我们讨厌的是数学的教学方式和考试方式。今天,请你暂且放下心中对教育制度的愤恨,让我们来一次伟大的数学公式巡礼。如果你在上学的时候老师告诉了你数学公式背后有这么多有趣的故事,你会爱上数学吗?

12、假设你在参加一个由50人组成的婚礼,有人或许会问:我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”

13、蔡志忠漫画《人生是时间的微积分》——少林寺石碑

14、我们身体真的很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。家长可能不理解,但是很多小孩子很快就能学会。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是它右边剩下的手指根数是将它们放在一起,得出7×9的答案是

15、之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。

16、妹妹问道:“咱们干点什么呢?”我说:“咱们可以把糖果拿出来,然后分开。

17、然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。

18、我们的身体真得很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。计算9的倍数时,将手放在膝盖上,如下图所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×只要弯曲标有数字7的手指,然后数左边剩下的手指数是右边剩下的手指数是将它们放在一起,得出7×9的答案是

19、到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。

20、因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。他也就能够借此机会来处理未完的事情。但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里。老师看了,很生气地训斥高斯。

21、面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。

22、我没有被这道题吓倒,难题能激发我的兴趣。我想,苹果树是梨树的3倍,假如要使两种树同一天施完肥,老王师傅就应该每天给“20×3”棵苹果树和20棵梨树施肥。

23、还把印度人使用“0”的方法向大家做了介绍。这件事被当时的罗马教皇知道了。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,于是下令,把这位学者抓了起来,用夹子把他的十个手指头紧紧夹住,使他两手残废,让他再也不能握笔写字。

24、妈妈说:“你们一个人写一篇数学故事吧?”我说:“好!”妹妹也说:“好!”妈妈又说:“你们一人看一集电视,看谁写得好。”

25、数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

26、它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。 

27、大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。

28、唐僧又写出:1305孙悟空马上说:“这太容易了,读作十三万零千五百六十七。”唐僧又摇了摇头,说:“遇到0,要特别注意,当一串数中间有0时,只要读零就可以了,它后面的数位不要读出来。所以这个数应该读作十三万零五百六十七。”

29、阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量。

30、当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。

31、麦克斯韦方程预言电磁波可以以不同的波长存在,例如我们今天叫作微波、红外线、紫外线和X射线的那些光波就都是电磁波。它们预言这样的波可以通过振荡电场产生。1901年,意大利人古列尔莫·马可尼正是利用这一原理发射了第一束无线电波。它们暗示光本身可以产生压强。果然不错,研究人员在20世纪发现了『太阳风』,它揭开了彗星尾部所指的方向背离太阳的千古之谜。而在1905年,它们又为阿尔伯特·爱因斯坦指明了发现相对论的道路。

32、大约在1500年前南北朝时期,数学著作《孙子算经》中记载了一个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?这就是著名的“鸡兔同笼”问题。这个问题对整个世界的数学界都有很大影响,比如传播到日本,就称为“龟鹤算”。

33、气象学家Lorenz提出一篇论文,名叫《一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风》论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做“蝴蝶效应”。

34、18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。

35、麦克斯韦方程最伟大的功绩就是将电现象、磁现象与光的本质有机地统一在完整的电磁场理论中。这组公式融合了电的高斯定律、磁的高斯定律、法拉第定律以及安培定律。比较谦虚的评价是:『一般地,宇宙间任何的电磁现象,皆可由此方程组解释。』

36、你今年几岁了?你家有几口人?你上几年级?你今天上了几节直播课?今天你所在地市新冠病毒肺炎病例的增减情况如何?亲爱的小朋友,当你回答这些问题的时候都要用到“数”。“数”在我们的生活中无处不在。那么数是怎样产生的?又是怎样发展的呢?今天就走进宋佳和宋华敏两位老师精心搜集整理的数学故事,探索数的奥秘吧!

37、国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。

38、当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。

39、如果一个是那么另一个的末位数字是并且是3的倍数,因而至少是但是

40、爱因斯坦其实并没有证明E=mc²!他曾经做过近似处理,因此他只是证明了E≈mc²(也就是说,能量与物质大体等价)。他没有真正下手确定这一近似计算的误差是多少。看上去他似乎根本就不在乎——作为一位不拘形骸的天才、数学课的『懒狗』,为什么要用迂腐的数学证明来糟蹋这样一个『很有趣、很有感染力』的想法?当然,爱因斯坦和其他人后来曾经回过头来对这个最重要的原理进行了更为严格的论证。

41、即勾股定理。『勾三股四弦五』,这一定理是如此地深入每一个地球人的心灵。它是人类早期发现并证明的重要数学定理之一(公元前约三千年的古巴比伦书版中就有记载),也是用代数思想解决几何问题的最重要的工具之一。勾股定理(毕达哥拉斯定理)约有400种证明方法,是数学定理中证明方法最多的定理之一。

42、理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。

43、他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。

44、抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。

45、就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。

46、0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”0的兄弟姐妹们一口齐声的说:“好啊。”8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”

47、假设你在参加一个由50人组成的婚礼,有人或许会问:我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”

48、《周髀算经》上说“径一周三”,把圆周率看成3,这只是一个近似值。美索不达米亚人在做第一个轮子的时候,也只知道圆周率是

49、大约在两千五百年前,罗马人还处在文化发展的初期,当时他们用手指作为计算工具。为了表示四个物体,就分别伸出四个手指;表示五个物体就伸出一只手;表示十个物体就伸出两只手。这种习惯人类一直沿用到今天。

50、沃尔夫斯凯尔为自己发现并改正了论文中的一个漏洞感到无比骄傲,原来的绝望和悲伤消失了,数学将他从死神身边唤回。

51、后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。”

52、在纵式中,纵摆的每根算筹都代表表示6~9时,则上面摆一根横的代表横式中则是横摆的每一根都代表其上面纵摆的一根代表而且规定,个位和百位必须用纵式,十位和千位必须用横式,纵横相间,使各位界限分明,以免发生混乱。

53、2 数学小故事有一次陈景润去理头发,他是38号,理头发还早着呢!于是他去了图书馆,忘了理发,38号的牌子还在口袋里呢!

54、陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。一天,沈元老师在数学课上给大家讲了一故事。

55、第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!

56、1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。

57、我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一段时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。

58、两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?

59、随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。

60、如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。

61、一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。

62、即,当指数n大于2时,上述方程没有整数解。

63、罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了。

64、10部关于数学的顶级纪录片,告诉孩子数学世界精彩万分!附观影链接

65、小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加得数算得快又准。”

66、但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。

67、战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。

68、妈妈说:“2集多长时间?”我说:“10+10=20分钟,1200秒。数学的趣味小故事篇12又到了周末,妈妈带我去钓鱼(我们是去钓假鱼)。

69、1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x 0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。

70、小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一退了以后少个一。十位数字怎么减,十位退一再去减。”

71、法老问泰勒斯用什么工具来量金字塔。泰勒斯说只用一根木棍和一把尺子,他把木棍插在金字塔旁边,等木棍的影子和木棍一样长的时候,他量了金字塔影子的长度和金字塔底面边长的一半。把这两个长度加起来就是金字塔的高度了。泰勒斯真是世界上最聪明的人,他不用爬到金字塔的顶上就方便量出了金字塔的高度。

72、抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。

73、    遍布全球的众多优秀近现代建筑,在设计方面运用了黄金分割的法则,给人以整体上的和谐与悦目之美。

74、如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了另一方向,那么,你就应该选择与开始时相反的一面。

75、阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电,“我找到了!”

76、每个数字从右到左依次为个位、十位、百位、千位和万位。只要从左到右把每个数字读出来,并在后面加上万、千、百、十就可以了,只是需要注意,最后一个数字不要读‘个’。所以,23456读作二万三千四百五十六。”

77、数学是最容易让孩子获得成就感的学科,通过自己的持续思考攻克了一道难题,用不同的方法得出最终的答案,比同学更快的解出同一道题,这些都让孩子获得极大的成就感。尤其是同学、老师、家长在旁边夸一句:你真聪明!这个孩子的数学绝对不会差。

78、首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。

79、就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。”小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。

80、10部关于数学的顶级纪录片,告诉孩子数学世界精彩万分!附观影链接

81、这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。

82、小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元……小熊怎么也理不出头绪来。

83、把一个物体分成两部分,当较长的部分与整体的比是0.618:1时,给人的感觉是最美的。这个神奇的比被称为“黄金比”。其中的0.618是怎样来的呢?

84、唐僧首先写出:234猪八戒迫不及待地说:“这个读二三四五六!”唐僧摇了摇头,说:“八戒,多位数的读法是有规律的。

85、阿基米德有许多故事,其中最着名的要算发现阿基米德定律的那个洗澡的故事了。

86、这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。

87、一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?

88、聪明的同学们,你们知道这是怎么一回事吗?数学的趣味小故事篇15从前,有一个老汉,临死前对三个儿子说:“我不行了。咱们家只有十七棵树,我死后,老大分二分之老二分三分之老三分九分之并且,每个树都不能砍倒。”说完这些,老汉死了。

下一篇:没有了
上一篇:2023易来的恋爱qq说说(春光日短的年少痛至刻骨的爱与恨.)
返回顶部小火箭