数学家的故事简短20字【文案100句】
一、数学家的小故事20字
1、关注我,让我成为你的专属小太阳吧
2、差不多三百年来有名的数学家都想要解决这个问题。法国的科学院,比利时的皇家科学院等数学团体都曾悬赏给这个问题解决者,可惜没有人能拿到。
3、少年时期他上过一所环境优雅的耶稣会学校──尖塔中学。二十岁在普瓦提埃大学获得法律学学位。虽然笛卡尔受过良好的教育,但他却认为除了数学以外任何其它领域的知识皆是有懈可击的。从此,他没有继续接受正规教育,而是决定漫游整个欧洲,开阔视野,见悉世面。由于笛卡尔的家庭经济富裕,足以使他囊满无挂,悠哉游哉。
4、1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。
5、160多年前,一个靠自己学习的巴黎小姐苏菲·日耳曼(So-phieGermain)在费马大定理上也有重要的贡献。她证明了如果p是奇素数,而且q=2p+1也是素数,那么xp+yp=zp没有整数解。这样对于小于100的所有奇素数这个问题就算解决了。
6、但是他最喜欢的玩意儿是搞数学和作一点科学研究,有时他把所得到的结果写信给在远方有同样兴趣的朋友,有时就把自己的心得写在数学书的空白处。当时还没有出现数学杂志可以让他发表他的研究心得。
7、一个农民要买每头价80元的牛和每头价50元的猪,他现在有810元,问能买几头牛和猪?(答:牛2头猪13头,或者牛7头猪5头。)
8、瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。
9、☞你绝对没想过原来数学家这么流氓,一言不合就进行暴力证明
10、然后冯·诺依曼就开始心算,算到了一半,那个职员就提示冯·诺依曼,冯·诺依曼继续算,然后突然很惊诧地说,你说得对!后来人家告诉冯·诺依曼,那位职员其实算了整整一个晚上,但冯·诺依曼只花了5分钟左右的时间。苍蝇之谜的故事这是冯·诺依曼最著名的故事了,有这样一个问题,两地相距三十二千米,两端分别有人骑自行车相向而行,他们的车速都是每小时十六千米,中间有一只苍蝇,以时速二十四公里从其中一人自行车前轮匀速飞行,遇到另一人车轮时,掉头返回,然后往复运动,直到二人自行车相碰,把苍蝇夹扁。
11、英国数学家莫迭(Mordell)曾经讲述:“如果你想发财,任何种方法都比证明这个费马定理还要容易的多。”因此请不要为这不见了的十万马克的奖金而难过。
12、欧拉是18世纪数学界最杰出的人物之他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。
13、第二种简单,直接把苍蝇飞行时速乘以飞行时间就行了,飞行时间怎么算呢?因为二人只需要骑行16千米就能相碰,所以只需要一个小时就会把苍蝇夹扁,而苍蝇只能飞1个小时,所以苍蝇时速24公里乘以一小时,答案就是24公里。
14、数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
15、祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
16、华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……
17、高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。
18、(1)欧几里得(英文:Euclid;希腊文:Ευκλειδης,公元前330年—公元前275年),古希腊人,数学家。被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础。
19、他最近用代数几何的工具证明了如果费马方程xn+yn=zn有整数解,那么这个解可以说是“非常的少”,这是目前对费马问题最接近解决的结果。他的方法是这样:如果(xm,ym,zm)是xn+yn=zn的无穷多解,我们根据zm的大小来排这数组(xm,ym,zm),由小排到大。那么我们就能找到一个常数a大于零和另外一个常数b,使得zm恒大于1010am+b,这个数是像天文数字那么大!
20、陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。
二、数学家的故事简短20字
1、瑞士的伯努利家族是一个数学家族,三代出现了8位杰出的科学家。这个家族人的脾气都不太好,最奇怪的他们是开始都不是从事数学,可是到后来全部迷上了数学。父亲因为儿子得了数学大奖,嫉妒之下竟然一脚从窗户把儿子踹到了室外。
2、但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。
3、1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:"你可以在两年之内获得博士学位。"可是华罗庚却说:"我不想获得博士学位,我只要求做一个访问者。
4、传说他是一个非常优秀的教师,他认为每一个都该懂些几何。有一次他看到一个勤勉的穷人,他想教他学习几何,因此对此人建议:如果这人能学懂一个定理,那么他就给他一块钱币。
5、祖冲之,将圆周率计算到了小数点后面第七位。证明了圆周率位于1415926和1415127之间。比欧洲人得到同样的结果早了一千多年。
6、中国南北朝时代南朝数学家、天文学家、物理学家。范阳遒(今河北涞水)人
7、阿基米德定律和洗澡的故事。
8、他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。
9、数学家雅谷伯努利的小故事
10、这样费马问题就变成了代数几何的问题了。
11、成都市高新区锦城大道1000号天府世家1号门旁商铺3楼
12、冯·诺依曼听过后,稍微思考了下,就报出答案24公里。提问者很失望,就说:你之前是不是听过这个方法啊?冯·诺依曼很奇怪,有什么巧招?难道不是把无穷数列相加吗?记得住数字却记不住人名有趣的是,冯·诺依曼的心算和记忆力这样强大,但是对于人名和人脸却记不住,但冯·诺依曼很善良,他即使把人家的名字和长相都忘记了,可是对于来访的每位客人,他都会陪他们在房间里走一圈,相互聊些有趣的事情。
13、在当年的金坛,华罗庚最喜欢去的地方,还是灯节、船会、庙会等场所,凡是这些热闹的地方都少不了他的身影。城东有座青龙山,山上有个庙。每逢庙会,庙中的“菩萨:”便头插羽毛,打扮得花花绿绿,骑着高头大马进城来。一路上,人们见到“菩萨”就磕头行礼,祈求幸福。华罗庚伸直脖子,望着双手合十的“菩萨”,心里暗自琢磨:“‘菩萨’果真万能吗?”当庙会散了,人们也陆续回家,华罗庚却跟着“菩萨”去了青龙山,想探个究竟,看一看“菩萨”的真面目。
14、高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。
15、稿件涉及数学、物理、算法、计算机、编程等相关领域,经采用我们将奉上稿酬。
16、由于费马对他的大定理在n=4时能证明,很可能他犯了错误,以为他这个方法是无往而不利,也能够解决所有的情形。
17、费马死后,他的大儿子把他的书信及一些手稿关于数学研究的成果汇集成书。人们很想知道费马怎么样证明那个“大定理”,可惜在手稿中都找不到定理的证明。
18、事情是因为星星而引起的。当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"
19、人们用“尝试和错误”(Trialanderror)的方法,费尽了九牛二虎之力,还是找不到最小的答案。人们猜想很可能这式子是找不到整数解,可是怎样证明呢?在公元900年左右,阿拉伯的数学家认为这式子对正整数无解,而且给了一个证明,很可惜后来人们发现这证明不严格,犯了错误。正确的证明要700年以后才出现。
20、1985年6月12日,华罗庚在日本讲学时,因突发心肌梗塞而去世,终年75岁。一生以“最大希望就是工作到生命的最后一刻”自勉的华罗庚,将永远活在人民的心中。
三、关于数学家的故事100字
1、祖冲之(429~500)
2、欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。
3、1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了着名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。
4、1649年,笛卡尔接受了瑞典女王克里斯蒂的慷慨之邀,来到斯德哥尔摩做她的私人教师。笛卡尔喜欢温暖的卧室,总是习惯晚些起床。当他得知女王让他清早五点钟去上课,他深感焦虑不安。笛卡尔担心早上五点钟那刺骨的寒风会要了他的命。果然不出所料,他很快就患了肺炎,1650年2月,在他达瑞典仅四个月后,被病魔夺去了生命。
5、这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”。
6、这个问题可以转变成代数问题来看:是否这样的代数式x3+y3=z3有正整数解?
7、我想以他的才能和人品来看,他不会做这样的事的。
8、宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。
9、阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。
10、方程xn+yn=zn对于不等于零的正整数x,y,z,当n大于2时,是没有解的。
11、☞分享数学,常识和运气——投资大师詹姆斯·西蒙斯2010年在MIT的讲座
12、田忌赛马是我国古代运用对策论思想解决问题的一个范例。
13、华罗庚幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”,但是他并不在意别人嘲笑他。
14、德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
15、爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。
16、据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。
17、数学源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。
18、参考资料:华罗庚——百度百科
19、杨辉是南宋时期杰出的数学家和数学教育家,世界上第一个排出丰富的纵横图和讨论构成规律的数学家。说起杨辉的成就,还得从一件偶然的小事说起。
20、(喜讯公告)危老师工作室开张啦!
四、数学家简短小故事
1、证明x2+5=y3没有整数解;
2、父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。
3、今天,就让我们走进解析几何之父——笛卡尔
4、⑤瑞士数学家和物理学家欧拉小时候因为问了老师星星有多少,触怒了老师的信条被退学,结果成了一个牧童。
5、2:古希腊数学家阿基米德:
6、数学家的故事30字:
7、无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就像瓦特看到蒸汽冲起水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。
8、尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
9、☞丘成桐:漫谈微分几何
10、国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。
11、叙拉古的亥厄洛国王委托金匠造一顶纯金的皇冠,但是怀疑里面掺了银子,于是请阿基米德鉴定。一次阿基米德洗澡时,发现水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回家中,口中大呼:“尤里卡!尤里卡!”(我发现了),于是便开始在大街上裸奔起来了,一直跑到家里。
12、欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?
13、其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数ταμαθηματικ(tamathēmatiká).
14、这个人看在钱份上就和他学几何了,可是过了一个时期,这学生对几何却产生了非常大的兴趣,反而要求毕达哥拉斯教快一些,并且建议:如果老师多教一个定理,他就给一个钱币。不需要多少时间,毕达哥拉斯把他以前给那学生的钱全部收回了
15、■吴正宪:我有4点经验,让孩子爱上数学
16、(5)艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。
17、战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
18、数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。
19、父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
20、这些结果费马都没有写下他的证明。可是对于(1)18世纪的数学家欧拉(Euler)花了7年的时间才找到对(1)的证明。而对于德国大数学家莱布尼兹(Leibniz)于1683年,以及欧拉在1749年也证明是对的。
五、数学家小故事
1、祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
2、基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
3、欧拉小学就被开除了,因为他问的问题太多,给老师太多的难堪。有人说欧拉是先会算术后会说话的,欧拉很小就知道等周原理:在周长固定的所有图形,面积最大的一定是圆。
4、参考资料:百度百科——欧几里得
5、阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古.父亲是位数学家兼天文学家.阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习.在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》.
6、祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在1415926与1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!
7、此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书CharlesKleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。
8、我们现在把商高定理的勾、股、弦,分别用英文字母x,y,z来表示,整个定理就可以写成一个代数式子,x2+y2=z
9、华罗庚不仅对数学肯动脑筋,对语文也很用心。有一次,老师把自己收藏的文学大师胡适的书分给学生,让每人看完后写一篇读后感。华罗庚分得的是《尝试集》,书中流露出作者提倡白话文的得意,认为自己是一次成功的尝试,于是在扉页上写了一首《序诗》:“尝试成功自古无,放翁这话未必是。我今为下一转语,自古成功在尝试。”
10、因此费马问题是等价于这样的几何问题:证明在n大于3的任何整数,曲线un+vn=1在uv平面上不可能有有理数点。
11、祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。
12、据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把几何图形的点和满足方程的每一组“数”联系起来。他苦苦思索,反复琢磨,到底通过什么样的方法才能把“点”和“数”联系起来呢?
13、 有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。
14、大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。
15、对于陈景润的成就,一位著名的外国数学家曾敬佩和感慨地誉:他移动了群山!
16、陈景润:一个故事引发的数学家。
17、它们有时也被人称为丢番图方程式(Diophantineequation)。为什么这样称呼呢?原来丢番图(Diophanmtus)是公元3世纪时在埃及阿历山大城(Alaxandria)的希腊数学家,他写了一本称为“算术”的书,里面记载了对一些数学问题的研究。如像下面这样的问题:“有一个农夫用一百元去买一百只的牛、羊、猪。已经知道一头牛价十元,一只羊价三元,猪一头是五角,问他买多少只、头羊、猪和牛?”这样的问题写成代数式子就是不定方程。因为他最早较有系统的研究这些问题,所以后来的人为了纪念他就称这类方程为丢番图方程式。
18、阿基米德死后,人们整理出版了《阿基米德遗著全集》,以永远缅怀这位科学巨匠的伟大业绩。
19、在物理学方面,笛卡尔也有所建树。他在中首次对光的折射定律提出了理论论证。他还解释了人的视力失常的原因,并设计了矫正视力的透镜。力学上笛卡尔则发展了伽利略运动相对性的理论,强调了惯性运动的直线性。笛卡尔发现了动量守恒原理。他还发展了宇宙演化论、漩涡说等理论学说,虽然具体理论有许多缺陷,但依然对以后的自然科学家产生了影响。
20、法老问泰勒斯用什么工具来量金字塔。泰勒斯说只用一根木棍和一把尺子,他把木棍插在金字塔旁边,等木棍的影子和木棍一样长的时候,他量了金字塔影子的长度和金字塔底面边长的一半。把这两个长度加起来就是金字塔的高度了。泰勒斯真是世界上最聪明的人,他不用爬到金字塔的顶上就方便量出了金字塔的高度。