罗素悖论怎么解决的(81句文案短句)

2023-03-05 13:33:35

罗素悖论怎么解决的

1、发明“集合论”(settheory)的人同样如此,他们从一个相当模糊的“集合”概念出发,而这种模糊导致了一些严重问题。

2、小丑乔治承诺要在周一至周五来一场让大家难以预料的“突如其来”的爆炸。虽然小丑们用严密的逻辑推理出突如其来的爆炸并不存在,但乔治还是做到了。这是怎么回事呢?(罗素悖论怎么解决的)。

3、即A∈A;A要么不是自身的元素,即A∉A。根据康托尔集合论的概括原则,可将所有不是自身元素的集合构成一个集合S即S1={x:x∉x}。

4、管理变革要继续坚持从实用的目的出发,达到实用目的的原则。在管理改进中,要继续坚持遵循“七反对”原则:坚决反对完美主义、坚决反对繁琐哲学;坚决反对盲目创新;坚决反对没有全局效益提升的局部优化;坚决反对没有全局观的干部主导变革;坚决反对没有业务实践经验的人参与变革;坚决反对没有充分论证的流程实用。

5、可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?

6、按照科斯交易成本理论我们再来看看互联网,互联网向企业提出的根本问题是什么?互联网企业是降低了市场交易成本还是降低了企业内部交易成本?互联网时代企业内部交易成本还能否低于市场交易成本?还有没有可能低于市场成本?互联网时代企业存在的理由,就是你的交易成本要低于市场交易成本。

7、以至于当发现“一个可以推导出两个自相矛盾结论的命题”时,还大惊小怪地命名为“悖论”。

8、(1)如果A包括其自身,那么很好!A会满足“成为A的一个成员”的条件——包括其自身/自含。

9、当然了,也有些悖论确实产生了深远影响,例如理发师悖论。

10、罗素悖论之所以称为是悖论,是因为它违反了形式逻辑中的矛盾律:矛盾律又称不矛盾律。它通常被表述为A不是非A,或A不能既是B又不是B。要求在同一思维过程中,对同一对象不能同时作出两个矛盾的判断,即不能既肯定它,又否定它。在传统逻辑里 ,矛盾律首先是作为事物规律提出来的,意为任一事物不能同时既具有某属性又不具有某属性。它作为思维规律,则是任一命题不能既真又不真。在罗素悖论中,罗素集R既属于自身又不属于自身,便是违反了矛盾律。

11、19世纪末,康托尔发表了一系列关于集合论的文章,他创建的集合论是数学史上最具有革命性的理论之令人难以置信又无法反驳。起初他的集合论遭到了很多数学家的批判,甚至有人将他的理论视为异端。终于,在20世纪初,集合论才得到了公认,学界相信集合论是非常完备的理论,甚至可以说是整个现代数学的基础。

12、于是有人因此沾沾自喜,认为自己证伪了上帝。

13、如果你认为数学家是在发现客观真理,那么你就不会接受维氏的分析和解决。如果你认为数学家是在发明主观理论,那么维氏的分析和解决再清楚再简单再合理不过了。

14、四是如何简化管理、防止管理的复杂性随规模非线性地增长,在坚持满足客户个性化需求的商业模式的同时,降低管理的复杂性。

15、这个就是华为的互联网思维,这个就是华为的互联网解决之道。这个也是今天华为还在向“蓝血十杰”学习的原因。说到底,就是要在互联网时代通过科学管理,通过运用互联网进一步降低企业内部运作成本,内部交易成本,这样才能够在互联网时代生存下去。

16、于是,囚徒心想,让我完全出乎意料是吗?那他们总不能在第七天执行。因为第七天是最后一天,如果我直到第六天都活得好好的,那么我将确切知道行刑日将是最后一天,这与“我猜不到具体日期,完全出乎意料”就相矛盾了。那么第六天就变成了可能行刑的最后一天。但若在第五天没有行刑,刽子手就只剩下第六天这一个选择,囚徒又将确切知道自己将死于第六天,这又与“猜不到具体日期,完全出乎意料”相矛盾。于是第六天也被排除。以此类推,第四……每一天都能被排除。囚徒心想,法官所说的难以预料的行刑日根本是不存在的,看来自己能顺利活下去了。然而,星期二中午,囚徒被押往刑场——这个结果对他来说非常出乎意料。

17、这世界充满悖论,像罗素悖论:“理发师的头谁来剃?”本来是困惑哲学家的问题怎么跑到管理界来了?

18、在世纪之交,卓越的分析哲学家伯特兰·罗素(BertrandRussell),发现这一概念(即,自含集合)中的一个严重问题,被称为“罗素悖论”。

19、集合论的创建者是康托尔(Cantor,1845-1918),当他29岁时,在《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章,此后,他从事集合与超限数方面的研究长达20多年。

20、有一本书叫《创新者的窘境》,提出了一个让大企业困惑的悖论,全书就是在阐述这个悖论和试图回答这个悖论:大公司之所以被颠覆不是因为他们管理不善,而是因为他们管理的太优秀了!

21、设这个集合为A,则A∈{x∉x}.那么,问题是:“不包含自身的集合所组成的集合,包不包含自身”,也就是A∈A?还是A∉A?

22、实际应用中,我们同样可以通过规定来规避他,但是,他揭示了一个至关重要的问题,那就是康托尔集合论的不完备性。

23、而他的另外一部著作《算数的基本规律》则直接跟我们探讨的“罗素悖论”相关。这要从弗雷格对自然数0的集合论定义说起。弗雷格将自然数0定义为所有不包含自身的集合(类)组成的集合(类)。

24、庄朝晖,关于对角线方法和停机问题的评论,第五届两岸逻辑教学与研究学术会议,重庆西南大学,2012年4月.

25、例如:理发师给除了自己以外所有自己不理发的人理发,理发师也给自己理发。

26、再复杂点,我们还希望考虑“诸多集合的聚集”(collectionsofsets)。

27、这是一个不可判定命题(undecidablepropersition):基于我们所知,无法证实或证伪任何一个选项。

28、“理发师悖论”是很容易解决的,解决的办法之一就是修正理发师的规矩,将他自己排除在规矩之外;可是严格的罗素悖论就不是这么容易解决的了。

29、罗素悖论由英国哲学家罗素针对集合论所提出来的一条逻辑悖论,描述为:某些集合是以自身做为元素的,例如所有概念的集合F,其集合自身F也是一个概念,所以该集合F是自身中的一个元素;某些集合是不以自身做为元素的,例如所有苹果的集合G,其集合自身不是苹果,所以该集合G不是自身中的一个元素。由此可知,任何一个集合,要么就是属于自身的,要么就是不属于自身的。现构造出一个集合R,R以所有自身不属于自身的集合作为元素,问:R是属于自身的?还是不属于自身的?如果R是属于自身的,则根据R的定义,R不能做为R中的元素,所以R是不属于自身的;而如果R是不属于自身的,则根据R的定义,R一定是R中的元素,则R是属于自身的,由此构成悖论。

30、在概率论(probabilitytheory)中,我们将“事件”(events)考虑为诸多结果的集合(setsofoutcomes);所以诸多事件的聚集,也是一个大集合,由其他集合构成。

31、这个难题,很自然地源自我们对“集合”的开放的、朴素的定义。

32、事实上,基于对“集合”的朴素定义,我们自然会考虑一个“所有事物的集合”(asetofeverything),或者一个“所有集合的集合”(asetofallsets)。(二者都是自含集合。)

33、许多卓越的数学家深为这新的理论所起的作用而感动,希尔伯特(Hilbert)称“没有人能把我们从康托尔为我们创造的乐园中开除出去”。

34、理科少年周彦:围棋4段、会写代码,却说自己像榴莲?老凡尔赛了!

35、去年,华为公司的IT与流程优化部通过与E公司的业界最佳实践对标,针对五个方面,提出“5个1”目标:合同前处理周期(1天),供应链备货周期,从发货到站点周期(1周),软件上载周期(1分钟),以及合同交付周期(1个月)。华为公司计划用5年时间(E公司用了8年),实现“5个1”目标,使自己真正进入世界领先企业行列。

36、那么,如何解决罗素悖论呢?很简单,对于“R是否属于R”此无定义处进行重新定义,属于不属于都可以,或者说此处没有意义也可以,看哪种定义比较适用。数学家构造的理论出现矛盾了,就像人们讲话出现了矛盾了一样,解决的方法很简单:“对不起,我没有注意到这里有矛盾,我重新说明一下,此处应该是如此如此……”

37、集合论是整个数学学科的逻辑基础。数学最重要的一点就是合乎逻辑,而悖论是自身相矛盾的命题,本身是不合乎逻辑的东西,罗素悖论的提出带来了第三次“数学危机”。

38、概括起来包括四个方面:第一个是基于数据和事实的理性分析和科学管理。按照“蓝血十杰”的管理哲学,事实都是可以度量的;不能够度量的事情就不是事实,最多是一种现象。第二个是建立了在计划、预算、流程和利润中心基础上的规范的管理控制系统。据说这次从中央到地方财政部门,都在大力推行的一件事情,就是管理会计,管理会计的重要性恰恰是在预算、计划流程和责任中心基础上建立起一套管理系统。第三个是重新定义了财务部门的功能,使之在传统的会计和融资功能基础上,承担起成本分析、利润分析、投资决策等现代管理会计的职责。第四个是客户导向和力求简单的产品开发策略。

39、店里的Tony老师很叛逆规定“只帮不给自己刮脸的人刮脸”这不禁引起方方的思考他只帮不给自己刮脸的人刮脸那么他可以给自己刮脸吗?Tony给自己刮脸就违背了原本规定可不给自己刮脸又不符合规定两种假设都与规定相矛盾

40、举个例子,就像一开始根据乘法来定义除法a/b=ciffa=b*c,就会得出0/0=2=3这样的矛盾。怎么解决这里的矛盾呢?难道要取消所有的除法?当然不是了,只需要在矛盾的地方重新定义一下:0不能作除数。瞧,问题就解决了。

41、如果集合A是自己的一个元素,那么集合A就不满足“不包括自己的集合”的定义,不应该出现在此集合中,矛盾;

42、然而好景不长,20世纪初,罗素悖论等一系列集合论悖论的发现,引起了人们对集合论,甚至是数学基础的讨论。正当数学家们不但接受了集合论而且还有大部分经典分析的时候,这些矛盾动摇了它们,使得数学家们对数学的整个基本结构的有效性产生了怀疑。

43、所以,语言并不需要严谨,能让对方听懂就行了。

44、一个关于数字的无限聚集,比如自然数N=5……应该也是一个集合。

45、目前,关于数学基础的各派思想依然层出不穷,至今没有形成一个在数学界被普遍接受的理论。

46、逻辑是不可战胜的,因为要反对逻辑还得使用逻辑。

47、庄朝晖,基于对角线引理和维特根斯坦思想对于悖论的分析,第六届全国分析哲学学术研讨会,山西大学,中国,2010年8月(入选《中国分析哲学2010》,中国现代外国哲学学会分析哲学专业委员会编,浙江大学出版社,2011年10月,67页-76页)

48、德国逻辑学家弗雷格(Frege)曾在自己的著作中写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成的时候却发现所干的工作的基础都崩溃了。”作为逻辑结构,数学已经处于一种悲惨的境地,数学家们以向往的心情回顾这些矛盾被认识以前的美好时代。(Kline,1972)

49、理发师悖论是罗素悖论的通俗版,其矛盾点在于:规定中的Tony“只帮不给自己刮脸的人”的这个集合无法建立,因为无法确定理发师本人能否在这个集合内。

50、这个悖论本身其实倒没什么,想把话说明白就多说两句。

51、而1901年,罗素提出了一个著名的悖论,产生了爆炸性的效果,因为这个悖论植根于集合论,一经提出,相当于从根本上否定了集合论的完备性。

52、“理发师悖论”是很容易解决的,解决的办法之一就是修正理发师的规矩,将他自己排除在规矩之外;可是严格的罗素悖论就不是这么容易解决的了。

53、1996年在华夏基石彭剑锋等六位教授的帮助下起草了《华为公司基本法》,帮助华为初步完成了对核心价值观和管理政策的系统思考;从1998年起至今,为了适应国际化、全球化经营的要求,华为持续投入十几亿美元,邀请IBM、accenture等多家世界级著名顾问公司,先后实施了五大类、几十个管理变革项目,主要是IT、TCNP、战略规划项目、IPD项目、集成供应链项目,每一个项目中都包含的有十几个子项目,持续的十几年,直到今天都没有完成。

54、正当数学家们觉得没有人比他们更懂集合的时候,英国哲学家柏兰德·罗素提了个问题:有没有不是集合的整体?也就是说,宇宙万物中,有没有不可能被放在一起考虑的一类东西?

55、当然,通俗不意味着浅显,悖论是个大题目,也是难题。首先,悖论品种繁多:书中所涉,就有罗素悖论及其通俗版本理发师悖论、说谎者悖论、格雷林悖论、贝里悖论、理查德悖论等,还有一些它们的变形。其次,悖论涉及面广:上面这些,就涉及集合、可定义性、自指、真假等等概念,横跨逻辑、语言、数学和哲学等学科。最后,也是最要紧的,悖论是古来的难题,耗费了无数智者的心血,但是,其实质为何,解法如何,至今仍然悬而未决。这本书的核心,就落实在悖论的实质和解法上,其方法之简洁独到,令人耳目一新之余,竟或有意外之感。所以,这本书也是一项严肃的学术探讨,深入浅出,独具一格。

56、简而言之,宴会的规则预示着这样一个矛盾的现象:“小丑乔治当且仅当他没资格参加宴会的时候,才有资格参加宴会”。这就是一个悖论。

57、华为为中国企业在世界市场的成功提供了两个重要启示:一个启示是从人的头脑中挖掘大油田、大森林、大煤矿。所以任正非说,“资源会枯竭,惟有文化才会生生不息,一切工业产品都是人的智慧创造的。华为没有可以依存的自然资源,惟有在人的头脑中挖掘……”所以华为坚持“销售收入的10%拨付研发经费,必要时可能还要加大拨付的比例”。

58、加利福利亚州也不是自然数,所以我们也会把它扔进集合。

59、全书一以贯之的想法,是提炼诸种悖论共同的逻辑形式,将它们“都归结到一个隐蔽的、未经证明的存在性假设”(罗素《数理哲学导论》2006年德文版序言对作者理论的评论)。所谓“隐蔽的存在性假设”,对于罗素悖论的解决,已成老生常谈,但用它来解析“说谎者”等其他悖论,则是这本书的创见。作者将悖论定位到反证法的“掐头去尾”,继而以一种全新的“句方程”理论,还原说谎者悖论的逻辑结构,显示其所藏所隐。这个理论不但提供了这类悖论的一种轻快简明的解答,更揭示了日常语言的一种隐蔽的、前所未见的代数结构,其深层意义尚待发掘。 

60、罗素悖论,及其在“现代公理化集合论”(modernaxiomaticsettheory)中的解决,展现了我们对于数学的理解,如何随着时间而进化和精细化。

61、一条线段和一条直线上的点一样多?90%的学霸都不会证明

62、罗素悖论(Russell’sParadox)

63、从罗素时代至今,很多学者会认为数学家的工作是在发现真理。但在维氏看来,数学家的工作更多的是在发明。

64、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。

65、(2)如果B不包括其自身,它将满足条件,成为它自己的成员之一;所以,B将必须包括其自身!

66、在《数学原理》中,罗素阐释了一个集合论悖论,由于它只涉及集合论中最基础的东西,易于理解,因而在数学界广泛传播。

67、来源:华夏基石e洞察(ID:chnstonewx)

68、维特根斯坦反复强调:“数学家不是发现者,而是发明者。”,又说“数学家一直在发明新的描述形式。有的人受实际需要的刺激,另一些人出自审美需要,还有些人以其他种种方式。”

69、自然语言从产生直到发展至今,其目的很简单,就是满足人与人之间的沟通,也就是说明白和听明白。

70、罗素悖论:这就是为什么数学不能拥有一个“所有事物”的集合

71、答案是分工协作,稍微复杂点的协作就需要沟通,这就是猴子们演化出语言能力的原因。

72、为了解决集合论的问题,数学家们目前的选择,是将集合论公理化。

73、现实不是科幻小说,科学发展中出现的任何理论危机都意味着我们认识的不足,也激励着一代又一代的科学家们去探索、发现。因此,我们不必追求完美的理论,相反,真理的丧失、权威的崩塌才是学科发展前所未有的良机。

74、现代集合论的诸种公理,非常具体地规定了如何建立“其他集合的集合”(setsofothersets)。

75、二是华为公司的运营管理与业界最佳实践还存在较大差距,已经成为制约公司市场竞争力提升的短板;

76、就像我们这个故事中的小丑们,他们总是在华丽的贵族晚宴上为客人们卖力地表演,为别人带来欢乐之后,却只能落寞地离场,演出结束后也没有资格享用宴会上的美食。

77、比如,自然数集,再比如,所有的未成年人,等等。这个假设看起来很容易使人信服,但这种不受任何限制的建构集合的方式,就出现了问题。

78、至此,朴素集合论,似乎在别处仍然成立,所以我们似乎OK。

79、在朴素的集合论中有这样一个假设:对于任何一个性质,满足该性质的所有元素,可以组成一个集合。

80、由著名数学家伯特兰·罗素(Russel,1872—1970)提出的悖论与之相似:

下一篇:没有了
上一篇:关于坚持不懈的名言或格言(81句文案短句)
返回顶部小火箭