数学的来历简介(73句文案短句)

2023-04-08 09:28:36

数学的来历简介

1、十个数字符号后来由阿拉伯人传入欧洲,被欧洲人误称为阿拉伯数字。由于采用计数的十进位法,加上阿拉伯数字本身笔画简单,写起来方便,看起来清楚,特别是用来笔算时,演算很便利。因此随着历史的发展,阿拉伯数字逐渐在各国流行起来,成为世界各国通用的数字。

2、数学的演进大约可以看成是抽象化的持续发展,或是题材的延展,而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。

3、丛书共7册,目前已经出版发行5册:《数学的故事》《物理的故事》《化学的故事》《生物的故事》《自然的故事》,后续将推出《地理的故事》《天文的故事》。本号后期将陆续推出其他分册的介绍,敬请期待!

4、恩格斯指出:从历史上看,数学中的原始概念——物品数和量及几何图形的概念——只是人在现实世界中,通过实际运用而后抽象的结果,而决不是在人脑里从纯粹思维中产生出来的。

5、底格里斯河与幼发拉底河之间及两河周围,叫做美索不达米亚,那儿产生过一种文化,与埃及文化一样,也是世界上最古老的文化之一。美索不达米亚人和埃及人虽然相距很远,但却以同样的方式建立了最早的书写自然数的系统──在树木或者石头上刻痕划印来记录流逝的日子。尽管数的形状不同,但又有共同之处,他们都是用单划表示“一”。

6、数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

7、再往后,阿拉伯人发明了分数线。13世纪初,意大利数学家斐波那契在他的著作中介绍阿拉伯数学,也把分数的记法介绍到了欧洲。像1/5这样的表示方式就一直沿用至今。

8、哲学和数学这两个词汇都要追溯到毕达哥拉斯,“哲学”的希腊文原意是“爱智慧”(传说毕达哥拉斯最早以“爱智者”自居),“数学”的原意是“可以学的东西”,这两个词放在一块就暗示出某种重要的事情。毕达哥拉斯学派追求的是智慧,而其教授传承的东西是数学,也就是说,数学在毕达哥拉斯那里不再只是一门实用的计算技术,而是一种真正的、崇高的知识了。

9、1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到的过似值.假定在平面上画一组距离为的平行线,向此平面任意投一长度为的针,若投针次数为,针马平行线中任意一条相交的次数为,则有,很多人做过实验,1901年,有人投针3408次得出π1415926,如果取,则该式化简为

10、无论如何,“算术”这个名称在汉代已经通行了,正式使用是在《九章算术》一书中。在宋、元两代,我国数学发展居世界前列。那时“算学”和“数学”这两个词是并用的。

11、科学是文化的重要组成部分,也是现代教育的核心内容和主要方法。丛书回顾反思古往今来著名的科学人物及其故事,追溯探究宇宙天体、自然演化和生命进化,给读者以知识的浇灌、文化的润泽、精神的滋养和情感的沟通,是教师和家长开展青少年科学教育的必备读本。

12、远在1万5千年前人类就已经能相当逼真地描绘出人和动物的形象,这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。

13、到文字出现之后,数学活动才开始脱离身体,人们用书面的符号记录数字和量度,比较复杂的数学技巧被发展起来。古埃及和古巴比伦,包括古印度和古中国,都有很高的数学成就。

14、古代文明的数学更多地是一种实用的技术,虽然在许多方面他们的努力已经远远超过实际的需求,但这也好比各种实用技术都会发展出某种游戏性的或艺术性的维度,但实用旨趣仍然是一个基调,这和希腊之后的数学有很大区别。比如巴比伦人会对演算结果进行“验证”,但并不在意逻辑演绎意义上的“证明”。另外,他们往往对精确解和近似解不作区分。

15、那些被西方故意颠倒了的历史,我们中国人必须自己再次颠倒回来,找到真相,发现真知,这需要文化自信!

16、代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.

17、其次,“数量关系”指的是什么?数和量是一回事吗?数量是一种关系吗?

18、最后,数学是一门“科学”吗,这意味着什么,也许它是一门技艺而非科学?

19、比如,蜜蜂建造的蜂巢,是严格的六角柱形体。它的一端是六角形开口,另一端则是封闭的六角棱锥体的底,由三个相同的菱形组成。这些蜂巢组成底盘的菱形的所有钝角都是109°28′,所有的锐角都是70°32′。后来法国数学家克尼格和苏格兰数学家马克洛林计算得知:如果要消耗最少的材料,制成最大的菱形容器正是这个角度。

20、天文学家阿叶彼海特在简化数字方面有了新的突破,他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示而第三格里的圆点就代表一百。

21、π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法.

22、故事是昨天,科学历程。故事是今天,生活现实。故事是明天,繁花似锦。喂,科学的故事呀!先睹为快吧!

23、代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之几何学则是最早开始被人们研究的数学分支。

24、15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正32边形周长,把π值推到小数点后16位,打破了祖冲之保持了上千年的记录.

25、数学究竟是什么呢?事实上在这本书里我也没有明确讨论“科学”究竟是什么,我并不试图为这些问题提供一个确定的答案,对科学的理解本身就是科学史的一部分,对数学的理解也是数学史的一部分。但下面我先引入一个流俗的定义,我们可以从这个定义蕴含的疑点出发去追溯。

26、再次,研究空间的学问与研究数量的学问为何被归在一起,几何与代数有何关系?是互补还是从属,谁从属于谁?

27、在科技引领创新发展的今天,原创科普已经成为传承文化、沟通世界的重要载体。丛书将理性思维和文学艺术完美融合,用极其通俗易读的语言把读者带入科学的世界,是一套难得的原创科普佳作。我们相信并且期待,未来的科学大师即将诞生于年轻一代读者中!

28、数学是研究现实世界空间形式和数量关系的一门科学。分为初等数学和高等数学。它在科学发展和现代生活生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。

29、除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。

30、我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。

31、当人类在心里将那一连串数字一一记下时,计算就开始孕育了。另外,人类对图形的识别也日益精准,其中人类最熟悉也最偏爱的图形就是圆。

32、特点:必须通过已经知道的情况才能计算出未知的情况。

33、  秦始皇结束了战国纷乱,一统华夏江山,按理说这时应该是数学家们集中起来,共同推动数学进步的一个时期,不过秦始皇的暴政加上他焚书坑儒的行动,给当时的文化产业造成了毁灭性的打击。这场文化浩劫持续到刘邦推翻暴政成立汉朝,数学和其他科学才得以重新发展。也就是在汉朝时期,人们开始进行先秦文化典籍的整理和抢救。而其中数学上抢救工作的结晶便是中国第一部数学专著《九章算术》被正式整理出来。它的作者已经不可考证,我们现在认为它是由历代各家所整理修订,逐渐形成定稿的。

34、当他们发现是无理数时,他们非常震惊,因为这与他们的信条矛盾。后来欧多克索斯提出比例理论,在一定程度上缓解了人们对无理数的困惑。

35、在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。

36、稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式.

37、数学”一词是来自希腊语,它意味着某种“已学会或被理解的东西”或“已获得的知识”,甚至意味着“可获的东西”;“可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E·Littre也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”一词。

38、数学的定义都是经过严格推敲的,是要反映它的本质,给人以形象的理解。举个稍复杂点的概念——支集,具体的定义为:一个函数f定义在集合X上,其中X的一个子集,满足f恰好在这个子集上非0,那么,这个集合称为支集。这就好像X轴是地面,函数像人一样从地面上支撑起来。

39、在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

40、直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”

41、先说数字的起源。这得包括“基数”和“序数”两个方面,基数就是单纯的1,2,3,序数则有顺序在里面。对基数来说,想必是来源于对周围环境中离散数量的认识,天天都见到如两只鸟,两只鞋,两只手,慢慢滴,人们从这些实例抽象出了“2”这个概念,其他数字也是如此。一开始人们需要表达“数量”的信息,一双手就可以表示十以内的数量,加上两只脚,20以内的数都没问题。但是20以上的就没有办法了,这时候用石头堆或者麦秆数来表示最好不过。可是慢慢地就发现,石头麦秆这些都不能保存信息,他们的寿命太短了,于是人们又开始利用记号,这样保存的信息就比较长久了。我估计一开始的方法就是有多少数量就画多少条横线,他们将这些刻痕记于动物骨或者泥板上,在捷克斯洛伐克,人们就找到了一块来自一匹幼狼身上的骨头,上面深深刻下了55道刻痕。这些刻痕被排列成两串,第一串30道,第二串25道,每一串刻痕之内按照5个一组的方式排列。我推测,因为5是一双手手指头的数目,5个成一串刚好方便以后重复使用。

42、后来,群居发展为部落。部落由一些成员很少的家庭组成。所谓“有”,就分为“一”、“二”、“三”、“多”等四种(有的部落甚至连“三”也没有)。任何大于“三”的数量,他们都理解为“多”或者“一堆”、“一群”。有些酋长虽是长者,却说不出他捕获过多少种野兽,看见过多少种树,如果问巫医,巫医就会编造一些词汇来回答“多少种”的问题,并煞有其事地吟诵出来。然而,不管怎样,他们已经可以用双手说清这样的话(用一个指头指鹿,三个指头指箭):“要换我一头鹿.你得给我三枝箭。”这是他们当时没有的算术知识。

43、我们最开始由于数量的需要,产生了数字。后来由于要解决位置的问题,产生了欧几里得平面几何。虽然中国人在古代并不知道欧几里得,但是中国人、希腊人和其他国家的人一样都需要解决这些实际问题。与算术的产生相仿,最初的几何知识则是源于人们对于形的直觉中萌发出来的,史前人大概首先是从自然界本身提取几何形式,在器皿制作、建筑设计及绘画装饰中加以呈现。据研究,不同地区几何的产生有不同的历史背景。古埃及几何学产生于尼罗河泛滥后土地的重新丈量,古印度的几何学的起源则与宗教实践密切相关,而古代中国几何学的起源更多的与天文观测相联系,由此,我们也可以发现几何学的出现离不开我们生产生活的需要。

44、——著名科学史家、中国科学院自然科学史研究所

45、胡翌霖|量子力学:引入了观察者or送走了上帝

46、自晚清时代的“洋务运动”以来,我们这几代人的知识体系,大多数都来于自被西方文化和学术入侵与殖民的“教育体制”的学校的教材课本所“教育传授”(洗-脑),因此,无论是中国学校的学生、教师、教授,还是社会上的专家、学者等,特别是那些“学术精英”和公知们,其民族虚无主义的表现都非常严重,真是数典忘祖!

47、同样地,人类从远古走来,最开始是猿,从猿进化到人。因此,人在生存发展的过程中,必然要产生基本的数量需求和位置需求。比如,人生存好要吃肉,吃肉就要捕猎,可捕猎是有风险,当然谁也不愿意受伤。那么,就要思考这一个月需要吃几头猪,并且不用冒更大的风险捕猎更多的猪。而这对应着基本的数量需求。另外,我们要有住的地方,不能直接挨着狮群住,也不能离水源太远,还要考虑地势高低,不能一下雨,住的地方就成了水坑。这就对应着基本的位置需求。这就产生了基本的数量需求和位置需求。

48、对于原始人来说,除了1和2这样的数字,更多的数可能难以理解,于是就用“一群”或“一堆”来形容。后来,他们学会了扳着自己的手指头数数。数着数着,他们突然发现手指是可以计数的啊。

49、从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”

50、数学逻辑的早期定义是本杰明·皮尔士(BenjaminPeirce)的“得出必要结论的科学”(1870)。在PrincipiaMathematica,BertrandRussell和AlfredNorthWhitehead提出了被称为逻辑主义的哲学程序,并试图证明所有的数学概念,陈述和原则都可以用符号逻辑来定义和证明。数学的逻辑学定义是罗素的“所有数学是符号逻辑”(1903)。

51、集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。

52、2002年,国际数学史学会在北京给新加坡国立大学数学系教授温丽容女士颁发了“凯尼斯·梅数学史杰出贡献奖”。(国际数学家大会作为全球数学界最高水平的学术会议,素有国际数学“奥运会”之称。)

53、巴比伦人已经开始使用以60为底的分数,他们能够把精确到百万分之一(图1),他们能够求解相当于一元二次方程的算术问题,甚至可以求出三次方程甚至更高次方程的近似解。

54、现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构、序结构、拓扑结构(邻域,极限,连通性,维数……)。

55、从已知概念、定理出发,把已知的数学知识作为特殊情况,并以此来建立更广泛的数学概念和定理的方法。从函数概念的形成和发展来看:由于罗马时代的丢番图对代数学中的不定方程对已有相当的研究,函数概念至少在那是已经萌芽。自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,函数概念有了力学来源。然后由莱布尼茨、达朗贝尔、欧拉、柯西,一直到黎曼,经过一步一步地扩充,才发展为以集合论为基础的一般性概念,成为应用广泛的一般理论。

56、在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。

57、泰勒斯(约公元前624-548年),是希腊早期的重要几何学家。通常认为,有很多几何学命题的证明归功于泰勒斯。

58、腓尼基地域面积虽然不大,但是其历史和文化却可以追溯到公元前4000年。腓尼基在地中海东岸、黎巴嫩山西侧,也就是今天的叙利亚沿海一带。大约在公元前1500年,腓尼基的海外贸易蓬勃发展起来。许多腓尼基人驾驶着自己的小船穿梭在地中海,在沿途用自己的物品交换其他人的物品,海上贸易的发展成就了腓尼基人航海家和商人这两种身份。

59、 数学王国历史多,亲爱的铁岭娃,今天的数学故事让我们一起来了解一下分数的历史。

60、“阿拉伯数字”的外貌长相暗藏了其不凡的中国汉字数字的出生之谜。

61、已知最古老的数学工具是发现于斯威士兰列朋波山的列朋波骨,大约是公元前35,000年的遗物。它是一支狒狒的腓骨,上面被刻意切割出29个不同的缺口,使用计数妇女及跟踪妇女的月经周期。相似的史前遗物也在非洲和法国出土,大约有35,000至20,000年之久,都与量化时间有关。

62、胡翌霖 | 我也来吐嘈《中国公民科学素质基准》

63、在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。

64、胡翌霖|世界的“图层”——说说PokemonGO与AR

65、传到欧洲后,欧洲人非常喜爱这套方便适用的记数符号,尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。

66、而进一步的发展,问题又出来了。数字太大了也没法刻,几百上千的,恐怕把所有动物骨头拿来都不够刻,费财又费力,那么自然就想到用一些简化后的记号来表示大一点的数。这就牵扯到进制的问题了,因为这样可以减少符号数,由于人有十根手指和十根脚趾头的缘故,十进制最终成为主流。但其间也出现过五进制、二进制、六十进制等不同的进制法,后来由于语言等方面的原因,十进制最终打败其他进制。不过也没有完全消除,比如六十进制在角度时间方面的继续存在。至于其中的详细过程,也许我们只能猜测,本人才疏学浅,这本书也无多大介绍。

67、2000多年前中国开始用算筹表示分数。但是,秦汉时期的分数的表现形式不一样。

68、希腊数学无疑受到巴比伦和埃及的影响,但走出了独特的道路。

69、直觉主义定义,从数学家L。E。J。Brouwer,识别具有某些精神现象的数学。直觉主义定义的一个例子是“数学是一个接着一个进行构造的心理活动”。直观主义的特点是它拒绝根据其他定义认为有效的一些数学思想。特别是,虽然其他数学哲学允许可以被证明存在的对象,即使它们不能被构造,但直觉主义只允许可以实际构建的数学对象。

70、基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。

71、公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率"和"密率"(又称祖率)得到1415926

72、特性:对已经知道的情况必须用指定的符号来表示。

下一篇:没有了
上一篇:表达爱国的文艺句子(12句文案短句)
返回顶部小火箭